CAZALY RESOURCES LIMITED

MOUNT VENN GOLD PROJECT

WIDESPREAD GOLD & ZINC MINERALISATION DEFINED

- Extensive gold mineralisation confirmed for over 1km at the Three Bears prospect
- Up to 40 m wide mineralised zone including intercepts of; 12m @ 1.19 g/t, 40m @ 0.36 g/t Au & 36m @ 0.47 g/t Au
- Thick Zinc mineralisation with associated Au–As–Ag and elevated Cu & Pb discovered from RAB drilling at the *Rutters* prospect. Mineralisation discovered below a coincident Zn-Au geochemical auger anomaly
- Rutters intercepts within weathered material includes; 39m @ 0.23% Zn,
 40m @ 0.12% Zn & 13m @ 0.25% Zn
- Zinc anomalism occurs within a felsic volcanic pile with pervasive pyrite alteration and with a coincident airborne EM anomaly – potential for VMS style base metal deposit

Cazaly Resources Limited (**ASX: CAZ, "Cazaly"** or "**the Company**") is pleased to present the results from the Company's maiden drilling programme conducted at the Mount Venn Project. The Mount Venn project is located ~125 km northeast of Laverton and just 40 km west of Gold Road Resources Ltd's (ASX:GOR) *Gruyere* gold deposit (148 Mt @ 1.30 g/t Au for 6.16M oz., GOR announcement, 22 April 2016) in the Eastern Goldfields region of Western Australia. The belt is associated with the regionally significant Yamarna Shear Zone complex and has many similarities with the Dorothy Hills greenstone belt which hosts Gruyere.

Following extensive technical assessment and reprocessing of a large historic database, comprising limited drilling, regional geophysics and geochemical datasets, the Company developed models primarily targeting gold mineralisation within the belt. Cazaly successfully completed land access agreements with the traditional owners in December and was able to conduct its first drill campaign in January this year comprising 94 aircore holes for 4,171m, 30 RAB holes for 970m and 14 RC holes for 1,438m over two prospects at *Three Bears* and *Rutters*.

Targeting was largely based upon anomalous gold and pathfinder geochemistry in association with favourable lithologies and structural positions defined from geophysics and previous mapping. Very little to no historic drilling had been previously conducted in these areas.

Figure 1: Geology & February 2017 drill locations within the Mount Venn Greenstone Belt

The programme proved to be highly successful in defining a major gold mineralised structure at Three Bears and outlining widespread zinc anomalism at Rutters.

THREE BEARS PROSPECT

A programme of 94 aircore (AC) and 14 reverse circulation (RC) drillholes was conducted over a 3km extent at Three Bears. Drilling targeted previously defined gold in auger geochemical anomalism associated with a major regional structure (Figure 2).

Results confirmed the *presence of a very substantial gold mineralised structure* with intercepts including; 12m @ 1.19 g/t Au, 40m @ 0.36 g/t Au, 36m @ 0.47 g/t Au, 28m @ 0.32 g/t Au and 25m @ 0.21 g/t Au with several 4 metre composite samples >1.0 g/t Au. Mineralisation occurs within a wide structure dipping shallowly to the east and discordant to a steeply dipping package of felsic volcanics. An ultramafic unit abuts the felsics to the east (Figure 3).

The confirmation that a large mineralised gold bearing structure is present in the area is particularly significant for the region. Figure 1 shows the extent of regional shears and the very large scope for finding material gold mineralisation. Key aspects of this include;

- 1. Large scale, gold bearing structures
- 2. Extensive near surface remobilised mineralisation
- 3. Presence of iron rich rocks including basalts, dolerite and gabbros
- 4. Internal granites (eg; Wartu Granite)
- 5. Tightly folded geometries (eg; Rutters Dolerite)

Given that the region has not previously been systematically explored for gold these features and the confirmation of a large gold bearing structure, greatly enhances the prospectivity of the region.

	GDA94	GDA94		Hole	Local				Interce	ot
HoleID	East	North	RL	Depth	Azm	Dip	From	То	Width	Au (g/t)
MVRC001	537,706	6,909,626	462	102	270	-60	28	64	36 m @	0.47
=					inc	luding	56	60	4 m @	1.75
MVRC002	537,740	6,909,630	463	160	275	-60	55	67	12 m @	0.55
							75	95	20 m @	0.36
MVRC003	537,800	6,909,630	462	174	270	-60	60	68	8 m @	0.17
							88	116	28 m @	0.32
							124	136	12 m @	0.12
MVRC004	537,600	6,909,750	467	96	273	-60	0	4	4 m @	1.00
MVRC005	537,650	6,909,680	467	96	270	-60	28	56	28 m @	0.32
MVRC006	537,700	6,909,680	463	100	270	-60	36	48	12 m @	0.39
							56	76	20 m @	0.35
					inc	luding	60	64	4 m @	1.30
MVRC007	537,720	6,909,580	461	102	270	-60	48	65	17 m @	0.43
							70	78	8 m @	0.17
MVRC008	537,770	6,909,580	463	100	270	-60	64	68	4 m @	0.48
							84	89	5 m @	0.31
							94	100	6 m @	0.17
MVRC009	537,700	6,909,500	461	102	270	-60	24	64	40 m @	0.12
MVRC010	537,750	6,909,500	462	100	270	-60	32	68	36 m @	0.29
MVRC011	537,550	6,910,750	465	100	270	-60	65	67	2 m @	0.50
MVRC012	537,600	6,910,750	460	100	267	-60	32	36	4 m @	0.13
							88	96	8 m @	0.34
MVRC013	538,300	6,909,300	457	100	270	-60	N	o Signific	ant Results	
MVRC014	538,350	6,909,300	460	108	270	-60	101	105	4 m @	0.23

Table 1: Significant RC Drill Intercepts, Three Bears, February 2017

Nb; Samples are largely 4 metre composite samples, intercepts estimated at >0.1 g/t Au

Table 2: Significant Aircore Drill Intercepts, Three Bears, February 2017

	GDA94	GDA94		Hole	Local				ıl	ntercep	ot
HoleID	East	North	RL	Depth	Azm	Dip	From	То	Width		Au (g/t)
MVAC0002	537,701	6,909,400	467	54	270	-60	24	36	12	m @	0.39
MVAC0003	537,746	6,909,401	465	48	270	-60	28	44	16	m @	0.32
MVAC0004	537,774	6,909,396	465	52	270	-60	24	36	12	m @	1.19
							48	52	4	m @	0.24
MVAC0013	537,549	6,909,903	464	49	270	-60	36	40	4	m @	0.24
							44	48	4	m @	0.11
MVAC0015	537,645	6,909,891	464	50	270	-60	32	50	18	m @	0.31
MVAC0017	537,750	6,909,899	466	48	270	-60	40	44	4	m @	0.19
MVAC0027	537,598	6,910,103	465	60	270	-60	52	60	8	m @	0.12
MVAC0028	537,701	6,910,098	463	61	270	-60	56	61	5	m @	0.15
MVAC0036	537,351	6,910,301	465	67	270	-60	52	60	8	m @	0.11
MVAC0037	537,450	6,910,300	469	48	270	-60	16	20	4	m @	0.13
" "							32	36	4	m @	0.11
MVAC0045	537,305	6,910,498	470	63	270	-60	32	36	4	m @	0.11
MVAC0046	537,404	6,910,500	469	64	270	-60	48	56	8	m @	0.18
MVAC0048	537,580	6,910,499	467	34	270	-60	28	32	4	m @	0.14
MVAC0055	537,300	6,910,654	472	65	270	-60	24	28	4	m @	0.13
							40	65	25	m @	0.21
MVAC0056	537,398	6,910,642	470	63	270	-60	59	63	4	m @	0.15
MVAC0058	537,602	6,910,649	469	23	270	-60	15	19	4	m @	0.38
MVAC0073	536,991	6,911,170	464	62	270	-60	60	62	2	m @	0.28
" "							36	40	4	m @	0.11
" "							40	48	8	m @	0.43

Nb; Samples are largely 4 metre composite samples, intercepts estimated at >0.1 g/t Au

Figure 3: Cross section 6,909,640mN, Three Bears prospect

RUTTERS ZINC PROSPECT

A programme of 30 RAB drillholes for 970 metres targeted a coincident auger geochemistry and Zinc-Gold anomaly situated approximately 6km south of the Three Bears prospect along the western margin of the Wartu granite (Figure 1). Three lines were drilled over a strike length of 400 metres (Figure 4). Results showed widespread and thick anomalous zinc mineralisation within

weathered felsic volcanics.

Intercepts included; **39m** @ **0.23% Zn**, **40m** @ **0.12% Zn** and **13m** @ **0.25% Zn**. The mineralisation also displays associated and elevated Gold (up to 4m @ 0.91 g/t Au), Silver (to 4.4 g/t Au) and Arsenic (to 151 ppm As) plus anomalous Copper and Lead.

The volcanics also display pervasive, fine grained sulphides, predominantly pyrite, whilst reprocessing of airborne historic ΕM (Electromagnetic) data highlighted a +1.5km long coincident anomaly below the geochemical anomaly (Figure 4).

The presence of extensive Zinc mineralisation, with coincident elevated levels of gold, arsenic, silver, copper and lead, occurring within a felsic volcanic pile indicates the potential for primary VMS (Volcanic Massive Sulphide) mineralisation at depth. The presence of pervasive pyrite alteration, typically proximal to such mineralisation, and a coincident EM anomaly gives further encouragement for the presence of base metal mineralisation.

	GDA94	GDA94		Hole	Local					Int	ercept	
HoleID	East	North	RL	Depth	Azm	Dip	From	То	Width	m @	Zn (ppm)	Au (g/t)
MVRB0001	540,694	6,903,695	458	30	270	-60	16	20	4	m @		0.13
MVRB0003	540,802	6,903,690	464	36	270	-60	28	36 eoh	8	m @	1045	
MVRB0004	540,853	6,903,706	462	45	270	-60	0	8	8	m @		0.22
							32	45 eoh	13	m @	2501	
MVRB0005	540,895	6,903,709	464	55	270	-60	16	55 eoh	39	m @	2290	
						And	44	52	8	m @		0.52
MVRB0007	540,995	6,903,690	464	43	270	-60	20	36	16	m @	1101	
MVRB0012	540,747	6,903,906	461	44	270	-60	40	44	4	m @	1270	
MVRB0013	540,797	6,903,893	462	45	270	-60	0	45 eoh	45	m @	650	
					includ	ding	44	52	8	m @	1260	
MVRB0014	540,848	6,903,883	460	40	270	-60	0	40	40	m @	1178	
MVRB0015	540,896	6,903,921	460	18	270	-60	0	18 eoh	18	m @	372	
MVRB0016	540,952	6,903,939	462	31	270	-60	12	31 eoh	19	m @	420	
MVRB0019	541,099	6,903,901	461	45	270	-60	4	24	20	m @	354	
MVRB0020	541,149	6,903,881	462	54	270	-60	44	48	4	m @	474	
MVRB0021	541,202	6,903,880	463	50	270	-60	4	50eoh	46	m @	273	
MVRB0022	540,748	6,904,104	461	29	270	-60	16	20	4	m @	309	
MVRB0023	540,803	6,904,105	464	13	270	-60	4	13 eoh	9	m @	365	
MVRB0024	540,854	6,904,103	468	45	270	-60	4	36	32	m @	442	
MVRB0025	540,901	6,904,100	465	35	270	-60	28	32	4	m @	302	
MVRB0026	540,949	6,904,101	465	17	270	-60	16	17 eoh	1	m @	877	
MVRB0027	541,002	6,904,098	465	4	270	-60	0	4 eoh	4	m @	271	
MVRB0029	541,096	6,904,095	466	24	270	-60	4	24 eoh	20	m @	382	
MVRB0030	541,150	6,904,093	461	28	270	-60	12	28 eoh	16	m @	284	

Table 3; Significant RAB Drill Intercepts, Rutters, February 2017

Nb; Samples are largely 4 metre composite samples, intercepts estimated at >0.1 g/t Au, >250ppm Zn

The Company is further assessing the data and planning follow up programmes at both prospects as well as utilising this new information to target other areas within this central to southern part of the project.

Cazaly's joint Managing Director Clive Jones said:

"We are greatly encouraged by the results of this, our maiden drilling programme conducted over the Mount Venn greenstone belt. Drilling at the Three Bears prospect has confirmed the presence of extensive gold mineralisation associated with major regional shears whilst the work at Rutters, albeit at an early stage, shows all the hallmarks of hosting significant VMS zinc mineralisation. Mount Venn is a very large project, and this early work shows that we have we have a lot ahead of us".

ENDS

For further information please contact: Nathan McMahon / Clive Jones Joint Managing Directors Cazaly Resources Limited Tel: +61 8 9322 6283 Em: admin@cazalyresources.com.au Website: www.cazalyresources.com.au

Competent Person's Statement

The information contained herein that relates to Exploration Results, Mineral Resources, Targets or Ore Resources and Reserves is based on information compiled or reviewed by Mr Clive Jones and Mr Don Horn, who are employees of the Company. Mr Jones is a Member of the Australasian Institute of Mining and Metallurgy and Mr Horn is a member of the Australian Institute of Geoscientists. Mr Jones and Mr Horn have sufficient experience which is relevant to the style of mineralisation and types of deposit under consideration and to the activity which they are undertaking to qualify as a Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Jones and Mr Horn consent to the inclusion of their names in the matters based on the information in the form and context in which it appears.

ANNEXURE 1.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 14 reverse circulation (RC) drill holes, 94 air core (AC) drill holes and 30 rotary air blast (RAB) drill holes were completed by Yamarna West Pty Ltd (a 100% owned subsidiary of Cazaly Resources Limited) to variable depths. All sampling was conducted using Cazaly Resources Ltd (CAZ) protocols including industry best practice, QAQC procedures including duplicates and standards. RC samples were collected in 1 metre intervals from a rig mounted cyclone with attached cone splitter. The dry samples were split into a bulk sample (green bag) and a representative 3kg split (calico). All 1 metre samples were lined up in rows of 20 beside the hole. Damp or wet samples were collected in green bags and spear/scoop sampled. Composite samples were collected from each 1 metre bulk green bag using a sample spear to ensure a representative sample was combined from 2-4 metre intervals, depending on the geologist's instructions. In some intervals, only 1 metre cone split representative samples were collected for analysis. RAB and AC samples were collected off a rig mounted cyclone in buckets and placed on the ground beside the hole in 10 sample rows. Composite samples consisting of representative scoop samples were collected from the sample piles in 1-4 metre intervals, depending on the geologist's instructions. 3kg composite samples were sent to Bureau Veritas in Perth, sorted, crushed and pulverized to -75µm, split to produce a 40g charge for either Fire assay (RC) or Aqua Regia digest (RAB, AC) analysis for gold. Samples were also analysed for Al, Fe, Mn, V, Ag, As, Ba, Bi, Co, Cr, Cu, Mo, Ni, Pb, Sb, Sc, Te, TI, W and Zn by ICP and OES or MS finish.
techniques	 Drift type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by 	 RC drilling utilized a face sampling percussion hammer with 5¹/₂ inch bits AC drilling utilized a face sampling blade or hammer bit with a nominal hole diameter of 80mm RAB drilling utilized a blade bit and open

Criteria	JORC Code explanation	Commentary
	what method, etc).	hole sample collection method with a nominal hole diameter of 80mm.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC, AC and RAB drill recoveries were visually estimated. All RC samples were dry and no significant ground water was encountered. Sample recovery was estimated to be good. Some sample loss was encountered at the top of hole AC and RAB sample recovery was mostly estimated to be good. Some wet samples were encountered in RAB drilling at the bottom of hole. These are <1% of samples collected and were recorded in geological logs. Drill cyclones were cleaned regularly
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill chips were geologically logged on site by geologists following the CAZ logging scheme. Logging recorded depth, colour, lithology, texture, mineralogy, mineralisation, alteration and other features. All drill holes were logged in full
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 1 metre RC drill samples fall through a rotary cone-splitter directly below the rig mounted cyclone. A 2-3 kg sample is collected in an pre-numbered calico bag, and lined up in rows with the corresponding plastic bag. The majority of samples were dry, wet or dry samples were appropriately recorded. AC and RAB 1metre drill samples were laid out on the ground in 10 metre rows. A 2-4 metre composite sample (2-3 kg) was collected using a metal scoop, into pre-numbered calico bags. The majority of samples were dry, wet or dry samples were appropriately recorded. Duplicate field sample composites were collected in RC drilling at the rate of 2 samples per hole Appropriate sampling protocols were used during RC, AC and RAB composite sampling. These included scoop or spear collection at various angles through bulk 1 metre sample bags or piles to maximize representation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the 	 All RC samples were analysed using a 40g charge Fire Assay with an AAS finish which is industry standard for gold analysis. A 40g aqua regia digest with an MS finish has been used for AC and RAB samples which is industry standard for low level gold analysis. This is

Criteria	JORC Code explanation	Commentary
	 analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 considered a partial digest Technique however in weathered samples it is considered to approximate a total digest assay. Samples were also analysed for Al, Fe, Mn, V, Ag, As, Ba, Bi, Co, Cr, Cu, Mo, Ni, Pb, Sb, Sc, Te, Tl, W and Zn by ICP and OES or MS finish. Field duplicate samples were submitted with each sample batch at a rate of 1 per 25 samples. The laboratory inserted standards, blanks and duplicate samples. Results are within tolerable limits
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All data has been checked internally by senior CAZ staff CAZ is yet to collect 1m splits within significant composite sample intercepts for assay. Duplicate composite samples show repeatable values with acceptable tolerances within significant intercepts where available Field data is collected using Field Marshal software on Toughbook computer. The data is validated using Micromine software in the office. No adjustment to assay data has been made
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All location points were collected using handheld GPS in MGA 94 – Zone 51
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 RC drill holes were drilled at varying spacing from 40m to 100m depending on the target and geology. AC and RAB drilling were drilled at 100m x 150m and 100m x 50m depending upon the targeting and the geology. This AC/RAB spacing was utilized for first pass testing of targets. Further RC drilling is considered necessary before being of sufficient density for Mineral Resource estimation Four metre composite samples have been collected for RC drilling via spearing. Four metre composite samples have been collected for RAB/AC drilling using a metal scoop
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to 	• RC drilling at -60 degrees towards the west (270) has appeared to confirm the interpreted east dipping stratigraphy minimizing lithological bias. RC drilling is considered sufficient to confirm primary mineralized structure orientation dipping to the east. AC/RAB drilling is not

Criteria	JORC Code explanation	Commentary
	have introduced a sampling bias, this should be assessed and reported if material.	 sufficient to confidently predict orientation of structural mineralisation No sampling bias is identified in the RC drill data
Sample security	 The measures taken to ensure sample security. 	RC samples were delivered by CAZ staff directly to the laboratory depots in Leonora and Kalgoorlie. The laboratory managed secure transport of samples from regional depots to the Perth laboratory
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	Data is audited and reviewed in house using Datashed and Micromine as well as visual audits by senior staff.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 All drilling is located within granted E38/3111, which is held 100% by CAZ through wholly owned subsidiary company Yamarna West Pty Ltd (YAM). YAM signed an Access Agreement for exploration with The Yilka Native Title Claimant group and the Cosmo Newberry Community. These groups have Native Title over the area through a registered claim and Cosmo Newberry Aboriginal Reserve. The tenement is in good standing with no known impediments
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Historic holders of the Project area include Global Metals Exploration NL, Elmina NL, Asarco Exploration Company and Kilkenny Gold NL RAB and AC drilling undertaken by Global Metals Exploration in 2011-12 highlighted gold mineralization in shallow weathered basement at the "Central" prospect known today as "Three Bears" Elmina, Asarco and Global Metals geochemical sampling has identified a number of other gold in soil, auger anomalies
Geology	 Deposit type, geological setting and style of mineralisation. 	Orogenic Archean gold mineralization associated with major shears is targeted at the Mt Venn Project. Base metal mineralization is also targeted. The geology of the mineralization is not yet known due to the lack of information collected to date.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	 Refer to tables and body of text within this announcement for drill hole locations and results. Low level geochemical information has been used from CAZ and historic drilling

Criteria	JORC Code explanation	Commentary
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 to help identify trends or the "footprint" of gold and base metal mineralization. This is summarized in figures and maps and considered appropriate. A nominal 0.1g/t gold and 250ppm Zn lower cut-off has been used and reported as significant in the context of the first pass drilling at a grassroots stage of exploration.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No top cuts have been applied when reporting results First assay from the interval is reported (Au1) Aggregate sample assays are calculated using a length weighted average Significant RC assay results have been reported based on >0.10g/t Au. Significant AC/RAB assay results have been reported based on >0.10g/t Au, and 250ppm Zn A representative "gram-metre" value has been calculated and presented in parts of the report using industry standard calculations based on "g/t gold x metre interval" aggregate over an anomalous intercept length. This intercept is based on plus 0.10g/t Au and 250ppm Zn and contains no more than one interval of waste. This representation of grade is considered appropriate for the style of mineralisation. No metal equivalent values are reported
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Mineralisation intersected in RC drilling appears oblique to the orientation of the drill holes. Reported mineralization down hole is considered to be closely representative of true widths. However, more information is required to confirm true width of mineralization. Orientation of mineralisation intersected in RAB/AC drilling is not known and therefore true widths of mineralization is not known
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to Maps, Figures and Diagrams in the document
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable,	 All drill hole locations are reported and a table of significant intercepts is provided

Criteria	JORC Code explanation	Commentary
	representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	in the document
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 All meaningful and material information is reported
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Second phase drilling is being planned and is expected to commence within Q2 2017